skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Negrete, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Gill regeneration in fish varies inter- and intra-specifically. The latter may be associated with myriad factors including capacity of energy metabolism. This study investigated whether mitochondrial respiration capacity influences the degree of gill regeneration and features of mitochondria in regenerated tissue by feeding fish an experimental diet aimed at modulating mitochondrial efficiency. Atlantic salmon reared on standard and experimental diet were subjected to 50% filament resection on a subset of filaments on the ventral and dorsal regions of the first gill arch. Mitochondrial respiration and citrate synthase activity (CSA) were measured in the resected tips of filaments (week-0) and then in the regenerated tissue at 20 weeks post-resection (week-20). The degree of filament regeneration was measured at week-20. The experimental diet reduced CSA and respiratory control ratio (RCR), and increased proton leak at week-0, which was associated with a 30% reduction in tissue regeneration compared with fish on standard diet. While CSA increased in the regenerated tissue of experimental diet fish, there was a decline in other metrics of mitochondrial respiration including state 3, proton leak and RCR irrespective of diet. Overall, mitochondrial respiration efficiency at week-0 was positively correlated with the degree of subsequent gill tissue regeneration. Additionally, state 3 respiration and proton leak at week-20 were positively correlated with tissue regeneration, whereas CSA exhibited a negative relationship. Our results indicate that the capacity of mitochondrial respiration may at least partially explain the inter-individual variation in tissue regeneration, but mitochondrial function in the regenerating tissue may be limited. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. ABSTRACT Respiratory plasticity is a beneficial response to chronic hypoxia in fish. Red drum, a teleost that commonly experiences hypoxia in the Gulf of Mexico, have shown respiratory plasticity following sublethal hypoxia exposure as juveniles, but implications of hypoxia exposure during development are unknown. We exposed red drum embryos to hypoxia (40% air saturation) or normoxia (100% air saturation) for 3 days post fertilization (dpf). This time frame encompasses hatch and exogenous feeding. At 3 dpf, there was no difference in survival or changes in size. After the 3-day hypoxia exposure, all larvae were moved and reared in common normoxic conditions. Fish were reared for ∼3 months and effects of the developmental hypoxia exposure on swim performance and whole-animal aerobic metabolism were measured. We used a cross design wherein fish from normoxia (N=24) were exercised in swim tunnels in both hypoxia (40%, n=12) and normoxia (100%, n=12) conditions, and likewise for hypoxia-exposed fish (n=10 in each group). Oxygen consumption, critical swim speed (Ucrit), critical oxygen threshold (Pcrit) and mitochondrial respiration were measured. Hypoxia-exposed fish had higher aerobic scope, maximum metabolic rate, and higher liver mitochondrial efficiency relative to control fish in normoxia. Interestingly, hypoxia-exposed fish showed increased hypoxia sensitivity (higher Pcrit) and recruited burst swimming at lower swim speeds relative to control fish. These data provide evidence that early hypoxia exposure leads to a complex response in later life. 
    more » « less
  3. null (Ed.)
    ABSTRACT The metabolic index concept combines metabolic data and known thermal sensitivities to estimate the factorial aerobic scope of animals in different habitats, which is valuable for understanding the metabolic demands that constrain species' geographical distributions. An important assumption of this concept is that the O2 supply capacity (which is equivalent to the rate of oxygen consumption divided by the environmental partial pressure of oxygen: ) is constant at O2 tensions above the critical O2 threshold (i.e. the where O2 uptake can no longer meet metabolic demand). This has led to the notion that hypoxia vulnerability is not a selected trait, but a by-product of selection on maximum metabolic rate. In this Commentary, we explore whether this fundamental assumption is supported among fishes. We provide evidence that O2 supply capacity is not constant in all fishes, with some species exhibiting an elevated O2 supply capacity in hypoxic environments. We further discuss the divergent selective pressures on hypoxia- and exercise-based cardiorespiratory adaptations in fishes, while also considering the implications of a hypoxia-optimized O2 supply capacity for the metabolic index concept. 
    more » « less